IPB

проф. др Марко Лончар

29. јуна 2023.

У оквиру традиционалног колоквијума Института за физику у Београду, у среду, 05. јула 2023. године у 12 часова у сали „Звонко Марић“ предавање под насловом:

Quantum optical interconnects

одржаће добитник награде „Марко Јарић“ за 2019. годину, проф. др Марко Лончар (Факултет техничких и примењених наука, Харвард универзитет, САД).

САЖЕТАК:

As quantum information technology matures and becomes more complex, so do the needs for interconnecting disparate quantum subsystems (computers, networks, sensors) into larger quantum networks. Thus, developing reliable quantum interconnects (QuICs) is emerging as one of the central goals for quantum information science and technology. This is a challenging task due to the variety of materials (e.g., superconductors, semiconductors, trapped atoms), qubits (spin, flux, charge, photon), and frequencies (microwave to optical) used. Moreover, QuICs must span a wide range of length scales, including chip-scale interfaces between quantum memories and processors, lab-scale links for modular quantum computers, and a continental-scale quantum internet.

In this talk we will describe our activities aimed at realization of two important QuICS: quantum repeater (QR) and quantum transducer (QT). Crucial components of QR is an optically addressable quantum memory based on silicon vacancy color center in diamond [1]. To enable efficient interaction between this spin qubit and optical photons, optical cavities are fabricated directly in diamond [2]. Next, thin film lithium niobate (TFLN) photonic platform [3-4] is used to control spectral, temporal, and spatial properties of emitted photons. Our QT is also based on TFLN platform [5, 6] using its ultra-low loss and large electro-optic coefficient. Here, single microwave photon, coupled to superconducting (SC) qubit, can be used to modulate optical signals stored in coupled optical ring resonators.

[1] M. Bhaskar et al., Nature 580, 60 (2020).
[2] A. Sipahigil et al., Science 6314, 847 (2016).
[3] D. Zhu et al., Adv. Opt. Photonics 13, 242 (2021).
[4] D. Renaud et al., Nat. Commun. 14, 1496 (2023).
[5] Y. Hu et al., Nature 599, 587 (2021).
[6] J. Holzgrafe et al., Optica 7, 1714 (2020).